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Motivation

• One central purpose of (biomedical) research: Facilitate evidence based decision making.

• This requires not only appropriate study designs but also practically usable results.

Practically usable results =̂ numerical quantities from which specific decision rules may be
derived, i.e. that are interpretable and individualizable

• Relevance is rising especially in the context of personalized medicine.
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Reporting methods are adapting
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The framework’s setting I

• The proposed framework applies to any (thus far parametric, i.e. finite dimensional
parameter space Θ) models where the conditional expectation of the target variable can
be written as

E[Y |X ] = gθ(X )

where the function gθ : Rp −→ R, p ∈ N, is at least once partially differentiable w.r.t.
each metric element of X ∀θ ∈ Θ.

• Here, we consider the function gθ to be indexed by θ ∈ Θ in the sense of the following
mapping

g : Θ −→ M(Rp), θ 7−→ gθ

with M(Rp) :=
{
f : Rp −→ R| f is

(
B(Rp),B(R)

)
-measurable

}
, p ∈ N.
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The framework’s setting II

• Given this, we propose to utilize probability measures to derive appropriately weighted
means of functions of gθ over areas of interest.

• Specifically, for some function h : Rd −→ R, d ∈ N>0, and set D ⊆ Rd̃ , d ≥ d̃ ∈ N>0,
we consider probability measures µ that satisfy the following requirements:

(M1) µ is a probability measure on
(
Rd̃ ,B(Rd̃ )

)
.

(M2) supp(µ) ⊆ D, if required as a result of µ being normalized w.r.t. D.

(M3)
∫
Rd̃ |h(x)|dµ(x) < ∞, if d̃ = d , or ∀xa ∈ Rd−d̃ :

∫
Rd̃ |h(xa, xb)|dµ(xb) < ∞, if d̃ < d .
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Quantities in the framework

• generalized marginal effects - change of conditional expectation, averaged over a
certain set of regressor/feature values.

• individualized expectation - conditional expectation, averaged over a certain set of
regressor/feature values.

• individualized predictive distribution - distribution of the target variable with a
specific individualized expectation set as expected value.
−→ combines estimation and sampling uncertainty.
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Advantages compared to existing effect size estimates and visualizations

1. For each definition, the user can individually determine probability measures that
represent the situationally appropriate averaging over the inputs.

−→ Quantities may be seen as tool kits that can be specified to derive effects/expectations
etc. over areas of interest.

2. After specification, one gets functions of the parameter vector θ for each quantity.

−→ This allows us to provide a consistent method of calculating point estimates and
well-interpretable uncertainty regions.
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Assumptions
In our framework, a regressor/feature whose effect on the target variable is of interest (XI)
has to be chosen for each quantity.
To aide in the choices of probability measures, we have identified the following "assumptions":
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Choices of probability measures
One of the main contributions of the proposed framework is its flexibility to be tailored to
most research settings, so there are no universally best choices of probability measure.

Still, here are some examples that will often be reasonably applicable:

• The distribution given by the relative frequency in a given data set.

• The (discrete) Uniform distribution - for metric regressors this choice additionally has
nice computational properties.

• The distribution of characteristics in the population as determined by previous studies.

⇛ Each combination of assumption and marginal probability measure choice leads to a
⇛ different interpretation of the resulting quantity!
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Uncertainty modelling

• We take a Bayesian approach to quantifying uncertainty – but all methods can still be
applied to the results of both Bayesian and frequentist analyses!

• Specifically, this is achieved by treating θ as a random variable with distribution equal to

• the posterior distribution given by a Bayesian analysis

• N(θ̂,Σθ̂) for the frequentist point estimate θ̂ and covariance matrix Σθ̂

and then deriving a point estimate (e.g. median) and credible set (e.g. equal-tailed
interval) directly for the random variable defined by q ◦ θ, for any considered quantity q.
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Example: International Stroke Trial; 30-60 year old patients
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Example: Association of exposure to BPA and obesity in children &
adolescents (NHANES 2005-2010)
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Outlook

• We are currently working on extending the framework to non- and semi-parametric
settings.

• Another natural extension of the given framework is to quantify a broader concept of
change, both absolute and relative, as a random variable of the form the random variable

Y [change] := c
(
Y [new],Y [base]

)
,

with Y [base] ∼ pµ=indiv . exp. 1(y |θ) and Y [new] ∼ pµ=indiv . exp. 2(y |θ) ,

with c : R −→ R representing some change function, such as the difference or quotient.
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