This function computes generalized Marginal Effects (gME) for a given model and regressor of interest.
Usage
get_gME(
model_fit,
reg_of_interest = NULL,
integration = NULL,
seed = NULL,
ndraws = 10000,
separate_interactions = FALSE,
catRIbin = FALSE,
...
)
Arguments
- model_fit
A fitted model object.
- reg_of_interest
The regressor of interest for which gME values are calculated.
- integration
An integration function. Default is NULL. #TOFIX ...
assumption1
assumption2
assumption3
- seed
Seed for random number generation. Default is NULL.
- ndraws
Number of draws for sampling. Default is 1000.
- separate_interactions
Boolean indicating whether interactions should be separated. Default is FALSE.
- catRIbin
Boolean indicating categorical RI binning. Default is FALSE.
- ...
Additional arguments to be passed to other functions.
Details
This function computes gME values based on the specified model and regressor of interest. It supports various types of models including GLM and GLMM. The gME values are computed either empirically or through other standard options depending on the distribution.
References
Kümpel, H. & Hoffmann, S. A formal framework for generalized reporting methods in parametric settings. ArXiv Prepr. ArXiv221102621 (2022).
Examples
if (FALSE) {
model <- lm(mpg ~ cyl + disp + hp + drat, data = mtcars)
get_gME(model_fit = model, reg_of_interest = "cyl")
}